Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Soil Science Society of America journal, 2008, Vol.72(6), pp.1694-1707
    Description: Proton nuclear magnetic resonance (1H NMR) relaxometry has been used to analyze pore size distributions of wet porous samples. To make this method applicable to soil samples, knowledge about contribution from the soil solution to the total proton relaxation is needed. We extracted soil solutions from nine soil samples and determined transverse proton relaxation rates, the concentration of Fe, Mn, and total organic C (TOC), and the pH of the solutions. The effects of Fe, Mn, and TOC on the proton relaxation in the soil solution were compared with those of dissolved Fe2+, Fe3+, and Mn2+ and of glucose, D-cellobiose, potassium hydrogen phthalate, sodium alginate, and agar in model solutions. Proton relaxation rates in the soil solutions were up to 20 times larger than in pure water, which was mainly due to dissolved Fe(III) and Mn(II) species. The relaxivities of Fe and Mn in soil solution were reduced to 40 and 70% compared with Fe(III) and Mn(II) in a model solution, respectively. Smaller relaxivities were primarily due to the formation of metal-organic complexes. We conclude that the proton relaxation in soil samples is generally accelerated by the soil solution, and its contribution must be considered to estimate pore sizes from relaxation times. By using the calculated relaxivities of Fe and Mn in soil solution, the contribution of the soil solution to the total proton relaxation can be estimated from the Fe and Mn concentration in the soil solution. ; Includes references ; p. 1694-1707.
    Keywords: Soil Organic Carbon ; Goethite ; Cellobiose ; Soil Solution ; Agar ; Soil Pore System ; Manganese ; Ions ; Iron ; Colloids ; Sampling ; Alginates ; Glucose ; Extracts ; Chemical Concentration ; Chemical Composition ; Nuclear Magnetic Resonance Spectroscopy ; Montmorillonite ; Sodium Alginate ; Pore Size Distribution ; Proton Relaxation ; Potassium Hydrogen Phthalate
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages