Format:
Online-Ressource
Edition:
1. Aufl.
Edition:
2011
ISBN:
3110255723
Series Statement:
Radon Series on Computational and Applied Mathematics 10
Content:
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the BV-norm have recently become very popular. Meanwhile the most well-known methods have been investigated for linear and nonlinear operator equations in Banach spaces. Motivated by these facts the authors aim at collecting and publishing these results in a monograph. Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany;Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.
Note:
In English
Additional Edition:
ISBN 3110255243
Additional Edition:
ISBN 9781283627924
Additional Edition:
ISBN 9783110255249
Additional Edition:
ISBN 9783112204504
Additional Edition:
Erscheint auch als Druck-Ausgabe
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 978-1-283-62792-4
Additional Edition:
Erscheint auch als Druck-Ausgabe Regularization methods in Banach spaces Berlin [u.a.] : De Gruyter, 2012 ISBN 3110255243
Additional Edition:
ISBN 9783110255249
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 978-3-11-220450-4
Language:
English
Subjects:
Mathematics
Keywords:
Regularisierung
;
Banach-Raum
DOI:
10.1515/9783110255720
URL:
Volltext
(lizenzpflichtig)
Author information:
Schuster, Thomas 1971-