Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    gbv_775338206
    Format: Online-Ressource (1236p) , online resource
    Edition: Springer eBook Collection. Computer Science
    ISBN: 9781461500056
    Series Statement: Massive Computing 4
    Content: The Handbook of Massive Data Sets is comprised of articles written by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, clustering methods, wavelets, optimization, external memory algorithms and data structures, the US national cluster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment. The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications
    Note: PrefacePart I: Internet and the World Wide Web -- Part II: Massive Graphs -- Part III: String Processing and Data Compression -- Part IV: External Memory Algorithms and Data Structures -- Part V: Optimization -- Part VI: Data Management -- Part VII: Architecture Issues -- Part VIII: Applications -- Index.
    Additional Edition: ISBN 9781461348825
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9781461348825
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9781461500063
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9781402004896
    Language: English
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages