Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Physical review. E, Statistical, nonlinear, and soft matter physics, January 2012, Vol.85(1 Pt 2), pp.016114
    Description: The influence of the network's structure on the dynamics of spreading processes has been extensively studied in the last decade. Important results that partially answer this question show a weak connection between the macroscopic behavior of these processes and specific structural properties in the network, such as the largest eigenvalue of a topology related matrix. However, little is known about the direct influence of the network topology on the microscopic level, such as the influence of the (neighboring) network on the probability of a particular node's infection. To answer this question, we derive both an upper and a lower bound for the probability that a particular node is infective in a susceptible-infective-susceptible model for two cases of spreading processes: reactive and contact processes. The bounds are derived by considering the n-hop neighborhood of the node; the bounds are tighter as one uses a larger n-hop neighborhood to calculate them. Consequently, using local information for different neighborhood sizes, we assess the extent to which the topology influences the spreading process, thus providing also a strong macroscopic connection between the former and the latter. Our findings are complemented by numerical results for a real-world email network. A very good estimate for the infection density ρ is obtained using only two-hop neighborhoods, which account for 0.4% of the entire network topology on average.
    Keywords: Models, Theoretical ; Communicable Diseases -- Epidemiology
    E-ISSN: 1550-2376
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages