Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Plant and Soil, 2013, Vol.364(1), pp.287-301
    Description: Background and aims: Nitrous oxide (N sub(2)O) and methane (CH sub(4)) can be emitted from surfaces of riparian plants. Data on the emission of these greenhouse gases by upland trees are scarce. We quantified CH sub(4) and N sub(2)O emissions from stems of Fagus sylvatica, an upland tree, and Alnus glutinosa, a riparian tree. Methods: The gas fluxes were investigated in mesocosms under non-flooded control conditions and during a flooding period using static chamber systems and gas chromatographic analyses. Results: Despite differences in the presence of an aerenchyma system, both tree species emitted N sub(2)O and CH sub(4) from the stems. Flooding caused a dramatic transient increase of N sub(2)O stem emissions by factors of 740 (A. glutinosa) and even 14,230 (F. sylvatica). Stem emissions of CH sub(4) were low and even deposition was determined (F. sylvatica controls). The results suggest that CH sub(4) was transported mainly through the aerenchyma, whereas N sub(2)O transport occurred in the xylem sap. Conclusions: For the first time it has been demonstrated that upland trees such as F. sylvatica clearly significantly emit N sub(2)O from their stems despite lacking an aerenchyma. If this result is confirmed in adult trees, upland forests may constitute a new and significant source of atmospheric N sub(2)O.
    Keywords: Methane ; Nitrous oxide ; Soil and stem emission ; Alnus glutinosa ; Fagus sylvatica ; Flooding
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages