Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecohydrology, Wiley, Vol. 11, No. 6 ( 2018-09)
    Abstract: By applying the newly developed flow cell (FC) concept, this study investigated the impact of small‐scale spatial variations (millimetre to centimetre) in organic matter (OM) composition (diffusive reflectance infrared Fourier transform spectroscopy), biological activity (zymography), and wettability (contact angle [CA]) on transport processes (tracer experiments, radiography). Experiments were conducted in five undisturbed soil slices (millimetre apart), consisting of a sandy matrix with an embedded loamy band. In the loamy band increased enzyme activities and OM (10 mm apart) were found compared with the sand matrix, with no interrelations although spatial autocorrelation ranges were up to 7 cm. CAs were increased (0–110°) above the loamy band and were negatively correlated with acid phosphatase. Missing correlations were probably attributed to texture variations between soil slices. A general correlation between CA and C content (bulk) were confirmed. Variability in texture and hydraulic properties led to the formation of heterogeneous flow patterns and probably to heterogeneously distributed interfacial properties. The new FC concept allows process evaluation on the millimetre scale to analyse spatial relations, that is, between small‐scale textural changes on transport processes and biological responses. The concept has been proved as a versatile tool to analyse spatial distribution of biological and interfacial soil properties in conjunction with the analysis of complex micro‐hydraulic processes for undisturbed soil samples. The concept may be improved by additional nondestructive imaging methods, which is especially challenging for the detection of small‐scale textural changes.
    Type of Medium: Online Resource
    ISSN: 1936-0584 , 1936-0592
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2418105-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Vadose Zone Journal Vol. 14, No. 5 ( 2015-05), p. 1-9
    In: Vadose Zone Journal, Wiley, Vol. 14, No. 5 ( 2015-05), p. 1-9
    Abstract: In porous media, the nonwetting phase is trapped on water saturation due to capillary forces acting in a heterogeneous porous structure. Within the capillary fringe, the gas phase is trapped and released along with the fluctuation of the water table, creating a highly active zone for biological transformations and mass transport. We conducted column experiments to observe and quantify the magnitude and structure of the trapped gas phase at the pore scale using computed microtomography. Different grain size distributions of glass beads were used to study the effect of the pore structure on trapping at various capillary numbers. Viscous forces were found to have negligible impact on phase trapping compared with capillary and buoyancy forces. Residual gas saturations ranged from 0.5 to 10%, while residual saturation increased with decreasing grain size. The gas phase was trapped by snap‐off in single pores but also in pore clusters, while this single‐pore trapping was dominant for grains larger than 1 mm in diameter. Gas surface area was found to increase linearly with increasing gas volume and with decreasing grain size.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Vadose Zone Journal Vol. 17, No. 1 ( 2018-01), p. 1-7
    In: Vadose Zone Journal, Wiley, Vol. 17, No. 1 ( 2018-01), p. 1-7
    Abstract: Water can be quantitatively detected in soil with X‐ray radiography. We developed an easy calibration method to correct for beam hardening. We also eliminated drift of X‐ray attenuation values due to detector latency. X‐ray radiography is a suitable approach to study water dynamics in undisturbed soil. However, beam hardening impairs the deduction of soil moisture changes from X‐ray attenuation, especially when studying infiltration of water into cylindrical soil columns. We developed a calibration protocol to correct for beam hardening effects that enables the quantitative determination of changing average water content in two‐dimensional projections. The method works for a broad range of materials and is easy to implement. Moreover, we studied the drift of X‐ray attenuation values due to the detector latency and eliminated its contribution to the quantitative analysis. Finally we could visualize the dynamics of infiltrating water into undisturbed cylindrical soil samples.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Geoarchaeology, Wiley, Vol. 30, No. 4 ( 2015-07), p. 369-378
    Abstract: Roman cisterns served as rainwater storage devices for centuries and are densely distributed in parts of northern Jordan. A major earthquake hit the region ca . A.D. 750 and in a short time many settlements were abandoned. As a consequence, most cisterns were not maintained, and they filled with sediments that today provide a postabandonment depositional record. In two field surveys, we mapped the locations of more than 100 cisterns in the Wadi Al‐Arab basin and selected two for detailed stratigraphic analysis that included 14 C and optically stimulated luminescence dating. Catchment basin area for each cistern was determined by differential GPS. Both cisterns filled with sediments after the great earthquake and consequent abandonment of the region. Calculated sediment volumes are translated to long‐term average sediment export rates of 2.6–6.6 t ha −1 a −1 , which are comparable to erosion and sediment yield rates from other studies within the Mediterranean region. Our pilot study suggests that this approach can be applied elsewhere to calculate long‐term sediment export rates on hill slopes containing relict cisterns.
    Type of Medium: Online Resource
    ISSN: 0883-6353 , 1520-6548
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1479950-9
    SSG: 6,14
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Vadose Zone Journal Vol. 18, No. 1 ( 2019-01), p. 1-10
    In: Vadose Zone Journal, Wiley, Vol. 18, No. 1 ( 2019-01), p. 1-10
    Abstract: The soil profile is the critical scale for representation of soil hydrology also at larger scales. Natural soils do not follow well‐defined hydraulic properties. Concepts are needed to model hydraulic nonequilibrium and hysteresis. Spatial patterns of functional soil types need to be identified. These can account for vertical stratification of hydraulic properties and structural attributes. Soil hydrology is a key control for the functioning of the terrestrial environment. Many environmental issues that we need to tackle today are directly linked to soil water dynamics. This includes agricultural production and food security, nutrient cycling and carbon storage, prevention of soil degradation and erosion, and last but not least, clean water resources and flood protection. However, these problems need to be addressed at the scales of fields, regions, and landscapes, while soil water dynamics and soil hydraulic properties are well understood and typically measured at much smaller scales—the comfort zone of soil physics. An obvious problem is how to link these vastly different scales and how to profit from small‐scale understanding to improve our capability to predict what is going on at the large scale. In this update, this problem is discussed based on insights gained during the last decades. As a synthesis, a two‐step scaling approach is proposed for modeling soil water dynamics from local to landscape scales where the scale of the soil profile is the stepping stone.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Land Degradation & Development, Wiley, Vol. 29, No. 9 ( 2018-09), p. 3112-3126
    Abstract: Bioeconomy strategies have been adopted in many countries around the world. Their sustainable implementation requires a management of soils that maintains soil functions and avoids land degradation. Only then, ecosystem services can be maintained and resources used efficiently. We present an analytical framework for impact assessment that links policy and technology driving forces for soil management decisions to soil processes, soil functional changes, and their impacts on ecosystem services and resource use efficiency, both being targets that have been set by society and are anchored in bioeconomy policy strategies and sustainable development goals. Although the resource use efficiency concept has a long‐term tradition, most studies of agricultural management do not address the role of soils in their efficiency assessment. The concept of ecosystem services has received increasing attention over the last years; however, its link to soil functions and soil management practices is still not well established. This study is the first to conceptually link the socioeconomic processes of external drivers for soil management with the natural processes of soil functions and connect them back to impacts on the social system. Application of the framework helps strengthen the science‐policy interface and to systemically assess and compare the opportunities and threats of soil management practices from the perspective of goals set by society at different spatial and temporal scales. Insights gained in this way can be applied in stakeholder decision‐making processes and used to inform the design of governance instruments aimed at sustainable soil management within a bioeconomy.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Vadose Zone Journal, Wiley, Vol. 18, No. 1 ( 2019-01), p. 1-14
    Abstract: This new technology is suitable for field‐scale quantification of CO 2 in soil. The measurement scale ranges from decimeters up to decameters. The concentrations from the soil water and air phases are averaged. Transient CO 2 production and transport reflect plant growth. Biological activity in soil causes fluxes of O 2 into and CO 2 out of the soil with significant global relevance. Hence, the dynamics of CO 2 concentrations in soil can be used as an indicator for biological activity. However, there is an enormous spatial and temporal variability in soil respiration, which has led to the notion of hotspots and hot moments. This variability is attributed to the spatiotemporal heterogeneity of both plant–soil–microbiome interactions and the local conditions governing gas transport. For the characterization of a given soil, the local heterogeneities should be replaced by some meaningful average. To this end, we introduce a line sensor based on tubular gas‐selective membranes that is applicable at the field scale for a wide range in water content. It provides the average CO 2 concentration of the ambient soil along its length. The new technique corrects for fluctuating external conditions (i.e., temperature and air pressure) and the impact of water vapor without any further calibration. The new line sensor was tested in a laboratory mesocosm experiment where CO 2 concentrations were monitored at two depths during the growth of barley ( Hordeum vulgare L.). The results could be consistently related to plant development, plant density, and changing conditions for gas diffusion toward the soil surface. The comparison with an independent CO 2 sensor confirmed that the new sensor is actually capable of determining meaningful average CO 2 concentrations in a natural soil for long time periods.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Vadose Zone Journal Vol. 14, No. 5 ( 2015-05), p. 1-2
    In: Vadose Zone Journal, Wiley, Vol. 14, No. 5 ( 2015-05), p. 1-2
    Abstract: Processes in capillary fringes (CFs) have a complex nature due to the interactions between the solid, liquid, and gaseous environments. Despite a considerable body of literature on CFs coming from different disciplines, the ongoing processes and their complex interactions are yet only partially understood.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages