Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, American Society for Microbiology, Vol. 13, No. 2 ( 2022-04-26)
    Abstract: Adenoviruses are very efficient high-capacity vaccine vectors and are common gene delivery systems. Despite their extensive use in preclinical models and clinical trials over the past decades, adenoviral vectors still require optimization. To achieve that, more thorough characterizations of adenoviral genes and gene products, as well as pathogen-host interactions, are indispensable. The adenoviral DNA binding protein (DBP) is a key regulatory protein involved in various cellular and viral processes. Here, we show that single amino acid exchange mutations in human adenovirus C5 (HAdV-C5) DBP strongly influence adenoviral replication by altering interaction with the cellular ubiquitination machinery. Specifically, phenotypic analyses of DBP mutants demonstrate that single amino acid substitutions can regulate interactions with the cellular USP7 deubiquitinase, impede viral DNA synthesis, and completely abolish viral late protein expression and progeny production. Importantly, cells infected with the DBP mutant UBM5 consistently lack DBP-positive replication centers (RCs), which are usually formed during the transition from the early to the late phase of infection. Our findings demonstrate that DBP regulates a key step at the onset of the late phase of infection and that this activity is unambiguously linked to the formation and integrity of viral RCs. These data provide the experimental basis for future work that targets DBP and its interference with the formation of viral RCs during productive infection. Consequently, this work will have immediate impact on DNA virus and adenovirus research in general and, potentially, also on safety optimization of existing and development of novel adenoviral vectors and anti-adenoviral compounds. IMPORTANCE To further understand the biology of human adenoviruses (HAdVs) and to optimize HAdVs for use in prophylactic and therapeutic therapies, a thorough understanding of key viral proteins is paramount. As one of the essential HAdV proteins, the DNA binding protein DBP plays important roles in various steps of the viral replication cycle. In this work, we aimed at deciphering the role of single amino acid exchange mutations in the HAdV-C5 DBP on interaction with the cellular deubiquitinase USP7 and regulation of viral replication. We identify interaction with USP7, viral replication center formation, and viral progeny production as potently regulated steps of the viral life cycle that are affected by these few and distinct mutations in DBP.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages