feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Access
  • 1
    UID:
    b3kat_BV047550137
    Format: 1 Online-Ressource
    Edition: [Zweitveröffentlichung]
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_25225
    Format: 1 Online-Ressource (12 Seiten)
    Content: Quantitative fatty acid signature analysis (QFASA) as a biochemical tool to study the diet composition of predators is frequently used in marine ecology to infer trophic links in vertebrate consumers. However, the potential and challenges of this method in other ecosystems have only recently been studied. The application in soil ecosystems leads to hurdles not encountered in the marine, such as the low similarity of fatty acid signatures between resource and consumer. So far, diet estimation attempts have been semisuccessful, necessitating to adapt QFASA for use in soil food webs. Dietary fat content may play an important role, as it influences consumer metabolism, and thus calibration coefficients for fatty acid trophic transfer. A series of feeding trials with baker's yeast spiked with five different pure fatty acids at various concentrations was conducted with Collembola, and the changes in calibration coefficients were observed. From there, equations were gained through regression analysis and new sets of calibration coefficients were calculated. QFASA was applied on a range of basal resources and the results compared with previously defined calibration coefficients. Calibration coefficients changed with the proportion of fatty acids in the diet and differed between the three Collembolan species. The re-estimation of diets showed an improvement of model performance by the new calibration coefficients and indicated several modes of fatty acid assimilation. These greatly influence the outcome of diet estimation, for example, algal and bacterial diets are likely underestimated due to high metabolic turnover rates. The application of QFASA in soil ecosystems remains challenging. The variation in calibration coefficients and the resulting decrease in estimation deviation indicate the merit of calculating calibration coefficients from consumer signatures through linear or exponential equations. Ideally, the method should, when extended to the entire fatty acid signature, allow correct determination of consumer diets in soil food webs.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Ecology and evolution Erschienen, : John Wiley & Sons, Inc., 11,2021,16, Seiten 11065-11076
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages