Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Material
Type of Publication
Consortium
Language
  • 1
    UID:
    (DE-101)981329888
    Format: 150 S. , Ill., graph. Darst. , 30 cm
    Note: Bremen, Univ., Diss., 2006 (Nicht für den Austausch)
    Additional Edition: Online-Ausg. Protein-mineral interaction of purified nacre proteins with calcium carbonate crystals
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    (DE-627)516995235
    Format: V, 150 S. , zahlr. Ill. und graph. Darst.
    Note: Auch als elektronisches Dokument vorh , Bremen, Univ., Diss., 2006
    Language: German
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    (DE-101)981220584
    Format: Online-Ressource
    Note: Bremen, Univ., Diss., 2006
    Additional Edition: Druckausg. Protein-mineral interaction of purified nacre proteins with calcium carbonate crystals
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    (DE-603)183309235
    Format: Online-Ressource
    Note: Bremen, Univ., Diss., 2006
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    (DE-627)516995596
    Format: 150 p. = 7278 KB, text and images
    Content: Biomineralization, Nacre, Haliotis laevigata, Protein, Calcium carbonate, Calcite, Aragonite, Protein-mineral interaction, Perlucin, Perlinhibin, Intracrystalline proteins, Atomic Force Microscopy (AFM), SANS, Crystallization. - Nacre, a fascinating biogenic material consisting of calcium carbonate and organic molecules, presents remarkable mechanical and chemical properties that far exceed those of the pure components. Nacre is created by a self-organizing process guided by organic macromolecules. In particular proteins specifically control and regulate the nucleation and growth of the mineral phase, influencing the crystal morphology and polymorph selection. In this work new strategies to extract and purify proteins from the nacre of Haliotis laevigata in their native and functional state were developed and mechanisms of interaction between native nacre proteins with calcium carbonate in solution and calcium carbonate minerals were investigated. In particular the function of the intracrystalline proteins, a novel group of proteins characterized for the first time in nacre, and perlucin and perlinhibin, two already sequenced nacre proteins, were elucidated. It has been shown that each nacre protein presents a very specific and unique function in terms of calcium carbonate mineralization.
    Note: Bremen, Univ., Diss., 2006
    Language: German
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    (DE-604)BV022220141
    Format: 1 Online-Ressource
    Note: Bremen, Univ., Diss., 2006
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    (DE-627)1855026325
    Format: 1 Online-Ressource (466 pages)
    ISBN: 9783527698042 , 3527698043 , 9783527698066 , 352769806X , 9783527698059 , 3527698051
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Introduction to Ceramic Materials -- 1.1 Introduction: Ceramics for Biotechnological and Environmental Applications -- 1.2 What are Ceramic Materials? -- 1.2.1 Advanced and Traditional Ceramics -- 1.2.2 Properties of Advanced Ceramics -- 1.3 Oxide Ceramics -- 1.3.1 Alumina -- 1.3.1.1 Alumina Structure and Properties -- 1.3.1.2 Applications of Alumina: Some Examples -- 1.3.2 Titania -- 1.3.2.1 Titania Structure and Properties -- 1.3.2.2 Applications of Titania: Some Examples -- 1.3.3 Zirconia -- 1.3.3.1 Zirconia Structure and Properties -- 1.3.3.2 Applications of Zirconia: Some Examples -- 1.3.4 Silica -- 1.3.4.1 Properties of Silica -- 1.3.4.2 Application of Silica: Some Examples -- 1.3.5 Iron oxide -- 1.3.6 Barium Titanate -- 1.4 Nonoxide Ceramics -- 1.4.1 Nitrides -- 1.4.2 Carbides -- 1.5 Carbon-based Materials -- 1.6 Conclusions -- References -- Chapter 2 Processing Methods for Advanced Ceramics -- 2.1 Introduction -- 2.2 Powder Synthesis and Preparation -- 2.3 Shaping Methods -- 2.3.1 Pressing -- 2.3.2 Plastic Forming -- 2.3.2.1 Extrusion -- 2.3.2.2 Injection Molding -- 2.3.3 Colloidal Shaping -- 2.3.3.1 Slip Casting -- 2.3.3.2 Gel-casting -- 2.3.3.3 Freeze-casting -- 2.3.3.4 Sol-gel Process -- 2.3.3.5 Tape Casting -- 2.4 Additive Manufacturing -- 2.5 Conclusions -- References -- Chapter 3 Surface Modification of Ceramic Materials -- 3.1 Introduction -- 3.2 Chemical Activation Strategies for Inert Ceramic Surfaces -- 3.2.1 Wet Chemical Hydroxylation: Acidic vs. Basic Hydroxylation -- 3.2.2 Hydrothermal Activation -- 3.2.3 Oxygen Plasma Treatment -- 3.3 Derivatization Strategies by Wet Chemistry Functionalization -- 3.3.1 Wet Chemical Silanization -- 3.3.2 Wet Chemical Nonsilane Functionalization. , 3.4 Ceramic Surface Decoration for Biotechnological and Environmental Applications -- 3.4.1 Biotechnological Applications -- 3.4.2 Environmental Applications -- 3.5 Summary and Outlook -- References -- Chapter 4 Methods for Surface Imaging and Combined Structural and Chemical Surface Analysis: Atomic Force Microscopy -- 4.1 Introduction -- 4.2 The Basic AFM Modes of Operation -- 4.2.1 Imaging modes -- 4.3 Dry AFM vs. Liquid-cell AFM -- 4.4 Technical Details About the AFM Imaging Process -- 4.4.1 Properties of Piezo Transducers and the Scanning Process -- 4.4.2 Properties of the Feedback Loops and Resulting Signals -- 4.4.3 Mechanical Stability and Tip Size Effects -- 4.4.4 Image Processing, Analysis and Interpretation -- 4.4.5 Secondary Contrasting Techniques -- 4.4.6 Suitability of Samples and Sample Preparation -- 4.5 Application of AFM for Biotechnological and Environmental Purposes -- 4.5.1 Testing the Surface Charges and Surface Chemistry of Functionalised Ceramics Surfaces -- 4.5.2 AFM for Environmental Applications -- 4.5.3 AFM Biofilm Formation - Microbiology -- 4.6 Conclusions -- References -- Chapter 5 Surface Chemical Analysis of Ceramics and Ceramic-Enhanced Analytics -- 5.1 Introduction -- 5.2 Methods for Surface Chemical Analysis of Ceramics: An Overview -- 5.2.1 Electron Spectroscopy (PES, Auger) -- 5.2.2 X-ray and UV Photoelectron Spectroscopy (XPS and UPS) -- 5.2.3 Auger Spectroscopy -- 5.2.4 Surface Chemical Analysis with XPS and Auger Spectroscopy -- 5.2.5 Secondary Ion Mass Spectrometry (SIMS) -- 5.2.6 Raman and Infrared Spectroscopy -- 5.3 Using Ceramic Colloids and Nanomaterials for Advanced Surface Chemical Analysis -- 5.3.1 Playing with Light Confinement, Morphology-dependent Resonances and Evanescent Fields: Opportunities for Optical Sensing and Vibrational Spectroscopy -- 5.3.2 Surface Sensing by Whispering Gallery Modes. , 5.3.3 Applications in Raman Microspectroscopy -- 5.3.3.1 Microlenses for Raman Microspectroscopy -- 5.3.3.2 SiO2/TiO2 and Hollow-shell Titania Resonators: Plasmon-free SERS -- 5.3.3.3 Probing Surface Chemical Reactions in Metal/Ceramic Composites -- 5.3.4 Ceramics for Matrix-assisted Laser Desorption Mass Spectrometry -- 5.4 Concluding Remarks and Outlook -- References -- Chapter 6 Methods for Electrokinetic Surface Characteristics -- 6.1 Introduction -- 6.2 The Electric Double-layer -- 6.3 Electrokinetic Phenomena-theory -- 6.3.1 Electrophoresis -- 6.3.2 Streaming Current-streaming Potential -- 6.3.3 Particle Covered Surfaces -- 6.4 Experimental Evidences, Applications -- 6.4.1 Electrophoretic Characteristics of Surfaces -- 6.4.2 Nano and Microparticle Suspensions -- 6.4.3 Protein Covered Particles -- 6.4.4 Streaming Current/Streaming Potential Characteristics of Surfaces -- 6.4.5 Bare Substrates -- 6.4.6 Polyelectrolyte Modified Surfaces -- 6.4.7 Particle Covered Surfaces -- 6.4.8 Protein Covered Surfaces -- 6.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 7 Functionalized Surfaces and Interactions with Biomolecules -- 7.1 Introduction -- 7.2 Fundamentals of Biomolecule Interactions with Functionalized Material Surfaces -- 7.2.1 Forces Between Biomolecules and Functionalized Surfaces -- 7.2.1.1 van der Waals forces -- 7.2.1.2 Electrostatic Interaction Forces -- 7.2.1.3 Hydrogen Bonds -- 7.2.1.4 Hydration and Hydrophobic Interaction Forces -- 7.2.1.5 Steric Interaction Forces -- 7.2.1.6 Specific Interaction Forces -- 7.2.1.7 Nonequilibrium Interaction Forces -- 7.2.1.8 Other Forces -- 7.2.2 Which Biomolecule, Media, and Material Properties Influence Biomolecule-Material Interactions? -- 7.2.2.1 Material Properties Influencing Biomolecule-Material Interactions. , 7.2.2.2 Biomolecule Properties Influencing Biomolecule-Material Interactions -- 7.2.2.3 Media Properties Influencing Biomolecule-Material Interactions -- 7.2.3 Events Occurring After Adsorption -- 7.3 Influence of Surface Functionality, Multifunctionality, and Heterogeneous Surface Chemistry -- 7.3.1 Charged and Zwitterionic Groups -- 7.3.2 Polymeric Surface Functionalization -- 7.3.3 Multifunctionality and Heterogeneity -- 7.3.4 Specific-Binding Surface Chemistries -- 7.4 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Interactions Between Surface Material and Bacteria: From Biofilm Formation to Suppression -- 8.1 Introduction -- 8.2 Biofilm Formation -- 8.3 Theoretical Models of Bacteria-Surface Interactions -- 8.3.1 The Thermodynamic Theory -- 8.3.2 DLVO Model -- 8.3.3 Extended DLVO-Theory -- 8.4 Detrimental Effects of Biofilms: Some Examples -- 8.5 Prevention of Biofilm Formation -- 8.5.1 Stimuli Responsive Coatings -- 8.5.2 Drug Release Antibacterial Materials -- 8.6 Characterization of Antimicrobial Materials and Coatings -- 8.6.1 Standards for Biofilm Growth and Analysis -- 8.7 Conclusions and Outlook -- References -- Chapter 9 Carbon Nanomaterials for Antibacterial Applications -- 9.1 Introduction -- 9.1.1 Important Material Properties that Govern Antibacterial Activity -- 9.1.2 Effect of Nanomaterial Size on Bacterial Viability -- 9.1.3 Effect of Nanomaterial Surface Functionalities on Cellular Viability -- 9.1.4 Proposed Mechanisms for Antibacterial Activity -- 9.2 Inherent Antibacterial Properties of Carbon Nanomaterials -- 9.2.1 Graphene -- 9.2.2 Carbon Nanotubes -- 9.2.3 Fullerenes -- 9.2.4 Nanodiamonds -- 9.2.5 Diamond-Like Carbon, Diamond Thin Films -- 9.3 Functionalization of Carbon Nanomaterials for Tailoring Antibacterial Properties -- 9.3.1 Graphene -- 9.3.2 Carbon Nanotubes -- 9.3.3 Fullerenes. , 9.3.4 Nanodiamonds -- 9.3.5 Diamond-Like Carbon, Diamond Thin Films -- 9.4 Summary and Outlook -- References -- Chapter 10 Mesoporous Silica and Organosilica Biosensors for Water Quality and Environmental Monitoring -- 10.1 Introduction -- 10.2 Mesoporous Silica Materials for Biosensor Development -- 10.3 Functionalization of Mesoporous Silica and Organosilica-Based Biosensors -- 10.3.1 Surface Functionalization -- 10.3.2 Immobilization of Enzymes on Silica-Based Mesoporous Materials for Biosensors -- 10.3.3 Electrochemical Biosensor -- 10.4 Applications of Mesoporous Silica and Organosilica-Based Biosensors -- 10.4.1 Glucose Sensing -- 10.4.2 Hemoglobin and Myoglobin Sensing Using Molecularly Imprinted Polymers -- 10.4.3 Mesoporous Silica-Based Biosensors for Water Quality Monitoring -- 10.4.4 Mesoporous Silica and Organosilica-Based Materials for Toxic Gas Sensing -- 10.4.5 Mesoporous Silica and Organosilica-Based Immunosensors -- 10.5 Conclusions and Outlook -- Acknowledgments -- Abbreviations -- References -- Chapter 11 Ceramic-Based Adsorbents in Bioproduct Recovery and Purification -- 11.1 Introduction -- 11.2 Chromatography and Chromatography Support -- 11.3 Functionalization of Ceramic-Based Adsorbents -- 11.3.1 Chemobiological Functionalization -- 11.3.2 Self-Assembled Systems -- 11.3.3 Composite Structures -- 11.4 Characterization of Ceramic Adsorbent Particles -- 11.4.1 Physicochemical Analysis -- 11.4.2 Surface Energetics -- 11.5 Fundamentals of Bioproduct Adsorption onto Ceramic Beads -- 11.6 Application of Ceramic-Based Adsorbents -- 11.6.1 General Chromatography -- 11.6.2 Facilitated Protein Purification -- 11.6.3 Integrated Downstream Bioprocessing -- 11.7 Conclusions and Outlook -- References -- Index -- EULA.
    Additional Edition: 9783527338351
    Additional Edition: 3527338357
    Additional Edition: Erscheint auch als 3527338357
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    (DE-101)1277376123
    Format: Online-Ressource, 464 Seiten , 3 Illustrationen, 19 Illustrationen
    Edition: 1. Auflage
    ISBN: 9783527698059 , 3527698051
    Additional Edition: Erscheint auch als Druck-Ausgabe 9783527338351
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    (DE-602)almahu_9949530967202882
    Format: 1 online resource (466 pages)
    ISBN: 9783527698042 , 3527698043 , 9783527698066 , 352769806X , 9783527698059 , 3527698051
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Introduction to Ceramic Materials -- 1.1 Introduction: Ceramics for Biotechnological and Environmental Applications -- 1.2 What are Ceramic Materials? -- 1.2.1 Advanced and Traditional Ceramics -- 1.2.2 Properties of Advanced Ceramics -- 1.3 Oxide Ceramics -- 1.3.1 Alumina -- 1.3.1.1 Alumina Structure and Properties -- 1.3.1.2 Applications of Alumina: Some Examples -- 1.3.2 Titania -- 1.3.2.1 Titania Structure and Properties -- 1.3.2.2 Applications of Titania: Some Examples -- 1.3.3 Zirconia -- 1.3.3.1 Zirconia Structure and Properties -- 1.3.3.2 Applications of Zirconia: Some Examples -- 1.3.4 Silica -- 1.3.4.1 Properties of Silica -- 1.3.4.2 Application of Silica: Some Examples -- 1.3.5 Iron oxide -- 1.3.6 Barium Titanate -- 1.4 Nonoxide Ceramics -- 1.4.1 Nitrides -- 1.4.2 Carbides -- 1.5 Carbon-based Materials -- 1.6 Conclusions -- References -- Chapter 2 Processing Methods for Advanced Ceramics -- 2.1 Introduction -- 2.2 Powder Synthesis and Preparation -- 2.3 Shaping Methods -- 2.3.1 Pressing -- 2.3.2 Plastic Forming -- 2.3.2.1 Extrusion -- 2.3.2.2 Injection Molding -- 2.3.3 Colloidal Shaping -- 2.3.3.1 Slip Casting -- 2.3.3.2 Gel-casting -- 2.3.3.3 Freeze-casting -- 2.3.3.4 Sol-gel Process -- 2.3.3.5 Tape Casting -- 2.4 Additive Manufacturing -- 2.5 Conclusions -- References -- Chapter 3 Surface Modification of Ceramic Materials -- 3.1 Introduction -- 3.2 Chemical Activation Strategies for Inert Ceramic Surfaces -- 3.2.1 Wet Chemical Hydroxylation: Acidic vs. Basic Hydroxylation -- 3.2.2 Hydrothermal Activation -- 3.2.3 Oxygen Plasma Treatment -- 3.3 Derivatization Strategies by Wet Chemistry Functionalization -- 3.3.1 Wet Chemical Silanization -- 3.3.2 Wet Chemical Nonsilane Functionalization. , 3.4 Ceramic Surface Decoration for Biotechnological and Environmental Applications -- 3.4.1 Biotechnological Applications -- 3.4.2 Environmental Applications -- 3.5 Summary and Outlook -- References -- Chapter 4 Methods for Surface Imaging and Combined Structural and Chemical Surface Analysis: Atomic Force Microscopy -- 4.1 Introduction -- 4.2 The Basic AFM Modes of Operation -- 4.2.1 Imaging modes -- 4.3 Dry AFM vs. Liquid-cell AFM -- 4.4 Technical Details About the AFM Imaging Process -- 4.4.1 Properties of Piezo Transducers and the Scanning Process -- 4.4.2 Properties of the Feedback Loops and Resulting Signals -- 4.4.3 Mechanical Stability and Tip Size Effects -- 4.4.4 Image Processing, Analysis and Interpretation -- 4.4.5 Secondary Contrasting Techniques -- 4.4.6 Suitability of Samples and Sample Preparation -- 4.5 Application of AFM for Biotechnological and Environmental Purposes -- 4.5.1 Testing the Surface Charges and Surface Chemistry of Functionalised Ceramics Surfaces -- 4.5.2 AFM for Environmental Applications -- 4.5.3 AFM Biofilm Formation - Microbiology -- 4.6 Conclusions -- References -- Chapter 5 Surface Chemical Analysis of Ceramics and Ceramic-Enhanced Analytics -- 5.1 Introduction -- 5.2 Methods for Surface Chemical Analysis of Ceramics: An Overview -- 5.2.1 Electron Spectroscopy (PES, Auger) -- 5.2.2 X-ray and UV Photoelectron Spectroscopy (XPS and UPS) -- 5.2.3 Auger Spectroscopy -- 5.2.4 Surface Chemical Analysis with XPS and Auger Spectroscopy -- 5.2.5 Secondary Ion Mass Spectrometry (SIMS) -- 5.2.6 Raman and Infrared Spectroscopy -- 5.3 Using Ceramic Colloids and Nanomaterials for Advanced Surface Chemical Analysis -- 5.3.1 Playing with Light Confinement, Morphology-dependent Resonances and Evanescent Fields: Opportunities for Optical Sensing and Vibrational Spectroscopy -- 5.3.2 Surface Sensing by Whispering Gallery Modes. , 5.3.3 Applications in Raman Microspectroscopy -- 5.3.3.1 Microlenses for Raman Microspectroscopy -- 5.3.3.2 SiO2/TiO2 and Hollow-shell Titania Resonators: Plasmon-free SERS -- 5.3.3.3 Probing Surface Chemical Reactions in Metal/Ceramic Composites -- 5.3.4 Ceramics for Matrix-assisted Laser Desorption Mass Spectrometry -- 5.4 Concluding Remarks and Outlook -- References -- Chapter 6 Methods for Electrokinetic Surface Characteristics -- 6.1 Introduction -- 6.2 The Electric Double-layer -- 6.3 Electrokinetic Phenomena-theory -- 6.3.1 Electrophoresis -- 6.3.2 Streaming Current-streaming Potential -- 6.3.3 Particle Covered Surfaces -- 6.4 Experimental Evidences, Applications -- 6.4.1 Electrophoretic Characteristics of Surfaces -- 6.4.2 Nano and Microparticle Suspensions -- 6.4.3 Protein Covered Particles -- 6.4.4 Streaming Current/Streaming Potential Characteristics of Surfaces -- 6.4.5 Bare Substrates -- 6.4.6 Polyelectrolyte Modified Surfaces -- 6.4.7 Particle Covered Surfaces -- 6.4.8 Protein Covered Surfaces -- 6.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 7 Functionalized Surfaces and Interactions with Biomolecules -- 7.1 Introduction -- 7.2 Fundamentals of Biomolecule Interactions with Functionalized Material Surfaces -- 7.2.1 Forces Between Biomolecules and Functionalized Surfaces -- 7.2.1.1 van der Waals forces -- 7.2.1.2 Electrostatic Interaction Forces -- 7.2.1.3 Hydrogen Bonds -- 7.2.1.4 Hydration and Hydrophobic Interaction Forces -- 7.2.1.5 Steric Interaction Forces -- 7.2.1.6 Specific Interaction Forces -- 7.2.1.7 Nonequilibrium Interaction Forces -- 7.2.1.8 Other Forces -- 7.2.2 Which Biomolecule, Media, and Material Properties Influence Biomolecule-Material Interactions? -- 7.2.2.1 Material Properties Influencing Biomolecule-Material Interactions. , 7.2.2.2 Biomolecule Properties Influencing Biomolecule-Material Interactions -- 7.2.2.3 Media Properties Influencing Biomolecule-Material Interactions -- 7.2.3 Events Occurring After Adsorption -- 7.3 Influence of Surface Functionality, Multifunctionality, and Heterogeneous Surface Chemistry -- 7.3.1 Charged and Zwitterionic Groups -- 7.3.2 Polymeric Surface Functionalization -- 7.3.3 Multifunctionality and Heterogeneity -- 7.3.4 Specific-Binding Surface Chemistries -- 7.4 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Interactions Between Surface Material and Bacteria: From Biofilm Formation to Suppression -- 8.1 Introduction -- 8.2 Biofilm Formation -- 8.3 Theoretical Models of Bacteria-Surface Interactions -- 8.3.1 The Thermodynamic Theory -- 8.3.2 DLVO Model -- 8.3.3 Extended DLVO-Theory -- 8.4 Detrimental Effects of Biofilms: Some Examples -- 8.5 Prevention of Biofilm Formation -- 8.5.1 Stimuli Responsive Coatings -- 8.5.2 Drug Release Antibacterial Materials -- 8.6 Characterization of Antimicrobial Materials and Coatings -- 8.6.1 Standards for Biofilm Growth and Analysis -- 8.7 Conclusions and Outlook -- References -- Chapter 9 Carbon Nanomaterials for Antibacterial Applications -- 9.1 Introduction -- 9.1.1 Important Material Properties that Govern Antibacterial Activity -- 9.1.2 Effect of Nanomaterial Size on Bacterial Viability -- 9.1.3 Effect of Nanomaterial Surface Functionalities on Cellular Viability -- 9.1.4 Proposed Mechanisms for Antibacterial Activity -- 9.2 Inherent Antibacterial Properties of Carbon Nanomaterials -- 9.2.1 Graphene -- 9.2.2 Carbon Nanotubes -- 9.2.3 Fullerenes -- 9.2.4 Nanodiamonds -- 9.2.5 Diamond-Like Carbon, Diamond Thin Films -- 9.3 Functionalization of Carbon Nanomaterials for Tailoring Antibacterial Properties -- 9.3.1 Graphene -- 9.3.2 Carbon Nanotubes -- 9.3.3 Fullerenes. , 9.3.4 Nanodiamonds -- 9.3.5 Diamond-Like Carbon, Diamond Thin Films -- 9.4 Summary and Outlook -- References -- Chapter 10 Mesoporous Silica and Organosilica Biosensors for Water Quality and Environmental Monitoring -- 10.1 Introduction -- 10.2 Mesoporous Silica Materials for Biosensor Development -- 10.3 Functionalization of Mesoporous Silica and Organosilica-Based Biosensors -- 10.3.1 Surface Functionalization -- 10.3.2 Immobilization of Enzymes on Silica-Based Mesoporous Materials for Biosensors -- 10.3.3 Electrochemical Biosensor -- 10.4 Applications of Mesoporous Silica and Organosilica-Based Biosensors -- 10.4.1 Glucose Sensing -- 10.4.2 Hemoglobin and Myoglobin Sensing Using Molecularly Imprinted Polymers -- 10.4.3 Mesoporous Silica-Based Biosensors for Water Quality Monitoring -- 10.4.4 Mesoporous Silica and Organosilica-Based Materials for Toxic Gas Sensing -- 10.4.5 Mesoporous Silica and Organosilica-Based Immunosensors -- 10.5 Conclusions and Outlook -- Acknowledgments -- Abbreviations -- References -- Chapter 11 Ceramic-Based Adsorbents in Bioproduct Recovery and Purification -- 11.1 Introduction -- 11.2 Chromatography and Chromatography Support -- 11.3 Functionalization of Ceramic-Based Adsorbents -- 11.3.1 Chemobiological Functionalization -- 11.3.2 Self-Assembled Systems -- 11.3.3 Composite Structures -- 11.4 Characterization of Ceramic Adsorbent Particles -- 11.4.1 Physicochemical Analysis -- 11.4.2 Surface Energetics -- 11.5 Fundamentals of Bioproduct Adsorption onto Ceramic Beads -- 11.6 Application of Ceramic-Based Adsorbents -- 11.6.1 General Chromatography -- 11.6.2 Facilitated Protein Purification -- 11.6.3 Integrated Downstream Bioprocessing -- 11.7 Conclusions and Outlook -- References -- Index -- EULA.
    Additional Edition: ISBN 3527338357
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    (DE-627)1830047671
    Format: 1 online resource (466 pages)
    ISBN: 9783527698066
    Content: Cover -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Introduction to Ceramic Materials -- 1.1 Introduction: Ceramics for Biotechnological and Environmental Applications -- 1.2 What are Ceramic Materials? -- 1.2.1 Advanced and Traditional Ceramics -- 1.2.2 Properties of Advanced Ceramics -- 1.3 Oxide Ceramics -- 1.3.1 Alumina -- 1.3.1.1 Alumina Structure and Properties -- 1.3.1.2 Applications of Alumina: Some Examples -- 1.3.2 Titania -- 1.3.2.1 Titania Structure and Properties -- 1.3.2.2 Applications of Titania: Some Examples -- 1.3.3 Zirconia -- 1.3.3.1 Zirconia Structure and Properties -- 1.3.3.2 Applications of Zirconia: Some Examples -- 1.3.4 Silica -- 1.3.4.1 Properties of Silica -- 1.3.4.2 Application of Silica: Some Examples -- 1.3.5 Iron oxide -- 1.3.6 Barium Titanate -- 1.4 Nonoxide Ceramics -- 1.4.1 Nitrides -- 1.4.2 Carbides -- 1.5 Carbon‐based Materials -- 1.6 Conclusions -- References -- Chapter 2 Processing Methods for Advanced Ceramics -- 2.1 Introduction -- 2.2 Powder Synthesis and Preparation -- 2.3 Shaping Methods -- 2.3.1 Pressing -- 2.3.2 Plastic Forming -- 2.3.2.1 Extrusion -- 2.3.2.2 Injection Molding -- 2.3.3 Colloidal Shaping -- 2.3.3.1 Slip Casting -- 2.3.3.2 Gel‐casting -- 2.3.3.3 Freeze‐casting -- 2.3.3.4 Sol-gel Process -- 2.3.3.5 Tape Casting -- 2.4 Additive Manufacturing -- 2.5 Conclusions -- References -- Chapter 3 Surface Modification of Ceramic Materials -- 3.1 Introduction -- 3.2 Chemical Activation Strategies for Inert Ceramic Surfaces -- 3.2.1 Wet Chemical Hydroxylation: Acidic vs. Basic Hydroxylation -- 3.2.2 Hydrothermal Activation -- 3.2.3 Oxygen Plasma Treatment -- 3.3 Derivatization Strategies by Wet Chemistry Functionalization -- 3.3.1 Wet Chemical Silanization -- 3.3.2 Wet Chemical Nonsilane Functionalization.
    Note: Description based on publisher supplied metadata and other sources
    Additional Edition: 9783527338351
    Additional Edition: Erscheint auch als Druck-Ausgabe 9783527338351
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages