Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
    UID:
    edochu_18452_8886
    Format: 1 Online-Ressource (15 Seiten)
    Series Statement: Stochastic Programming E-Print Series 2000,2000,10
    Content: We propose an alternative approach to stochastic programming based on Monte-Carlo sampling and stochastic gradient optimization. The procedure is by essence probabilistic and the computed solution is a random variable. The associated objective value is doubly random, since it depends on two outcomes: the event in the stochastic program and the randomized algorithm. We propose a solution concept in which the probability that the randomized algorithm produces a solution with an expected objective value departing from the optimal one by more than $\epsilon$ is small enough. We derive complexity bounds for this process. We show that by repeating the basic process on independent sample, one can significantly sharpen the complexity bounds.
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages