Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hoboken, NJ : John Wiley & Sons, Incorporated
    UID:
    b3kat_BV048221407
    Format: 1 Online-Ressource (xxiii, 530 Seiten)
    ISBN: 9781119847397 , 9781119847380 , 9781119847373
    Series Statement: IEEE Press Series on Power and Energy Systems Ser
    Note: Description based on publisher supplied metadata and other sources , Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers , 3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays , 4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation , 5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area , 6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current , 8.3.3.1 Substation Grounding Requirements
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-1-119-84736-6
    Language: English
    Keywords: Elektrisches Energiesystem ; Schutz
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages